Numerical operations among rational matrices: standard techniques and interpolation
نویسندگان
چکیده
Numerical operations on and among rational matrices are traditionally handled by direct manipulation with their scalar entries. A new numerically attractive alternative is proposed here that is based on rational matrix interpolation. The procedure begins with evaluation of rational matrices in several complex points. Then all the required operations are performed consecutively on constant matrices corresponding to each particular point. Finally, the resulting rational matrix is recovered from the particular constant solutions via interpolation. It may be computed either in polynomial matrix fraction form or as matrix of rational functions. The operations considered include addition, multiplication and computation of polynomial matrix fraction form. The standard and interpolation methods are compared by experiments.
منابع مشابه
Rational and Polynomial Matrices
where λ = s or λ = z for a continuousor discrete-time realization, respectively. It is widely accepted that most numerical operations on rational or polynomial matrices are best done by manipulating the matrices of the corresponding descriptor system representations. Many operations on standard matrices (such as finding the rank, determinant, inverse or generalized inverses, nullspace) or the s...
متن کاملStructured matrices in the application of bivariate interpolation to curve implicitization
A nonstandard application of bivariate polynomial interpolation is discussed: the implicitization of a rational algebraic curve given by its parametric equations. Three different approaches using the same interpolation space are considered, and their respective computational complexities are analyzed. Although the techniques employed are usually associated to numerical analysis, in this case al...
متن کاملPivoting for Structured Matrices and Rational Tangential Interpolation
Gaussian elimination is a standard tool for computing triangular factorizations for general matrices, and thereby solving associated linear systems of equations. As is well-known, when this classical method is implemented in finite-precision-arithmetic, it often fails to compute the solution accurately because of the accumulation of small roundoffs accompanying each elementary floating point op...
متن کاملNumerical linear algebra techniques for efficient RBFs interpolation and collocation
Scattered data interpolation using Radial Basis Functions (RBFs) involves solving ill-conditioned Symmetric Positive Definite (SPD) linear systems; refer e.g. to [6] for further details. We will discuss the properties (conditioning, density) of the interpolation matrices for both global and compactly supported kernels, depending on the value of the shape parameter for both classical global inte...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 35 شماره
صفحات -
تاریخ انتشار 1999